A medical Visual Question Answering (VQA) system can provide meaningful references for both doctors and patients during the treatment process. Different from normal images, a learning setting with medical images is more challenging due limited amounts of data, class-imbalance and the presence of label noise for diagnosis tasks. Moreover, little attention is paid to how the images and meta-data is …
Supervisors:
Amelia Jiménez-Sánchez
Semester: Fall 2023
Tags: medical imaging, deep learning, machine learning, transfer learning, meta-learning
Deep neural networks have been revolutionary in computer vision and publicly available image datasets played an important role in this success. Due to their size, neural networks require vast amounts of data for training. Yet when it comes to medical settings dataset sizes are very limited due to the cost of data annotation, privacy concerns, differences in imaging techniques, and others. In such …
Supervisors:
Dovile Juodelyte
Semester: Fall 2023
Tags: transfer learning, deep learning, medical imaging