Machine learning methods are often evaluated on benchmark datasets, in computer vision, medical imaging, NLP and other fields. In such evaluation, researchers often describe the data as being:
representative, for example based on the distribution of ages of the patients mirroring the world population, similar, for example because both dataset contain pictures of animals diverse, for example …
Supervisors:
Veronika Cheplygina
Semester: Spring 2025
Tags: machine learning, medical imaging, data analysis, meta-research
Machine learning methods for medical imaging, for example segmentation of skin lesions or classification of lung cancer, are often evaluated on benchmark datasets such as ISIC, CheXpert, MIMIC-CXR and so forth. In such evaluation, researchers often compare the methods they propose, to state-of-the-art methods in the field, and report various performance metrics such as Dice score, AUC etc.
Due to …
Supervisors:
Veronika Cheplygina
Semester: Spring 2025
Tags: machine learning, medical imaging, data analysis, meta-research, reproducibility