Tagged with: data analysis


PROPOSAL

Machine learning methods are often evaluated on benchmark datasets, in computer vision, medical imaging, NLP and other fields. In such evaluation, researchers often describe the data as being: representative, for example based on the distribution of ages of the patients mirroring the world population, similar, for example because both dataset contain pictures of animals diverse, for example …
Supervisors: Veronika Cheplygina
Semester: Spring 2025
Tags: machine learning, medical imaging, data analysis, meta-research

PROPOSAL

Outlier detection is carried out when the information is stored at the server. However, with the new IoT computational capabilities, outlier detection can be developed locally. Therefore, it is necessary to know how much RAM/Flash is needed for this step and which IoT brands can handle it. This project is divided into two parts. The first is implementing light-heavy ML algorithms in single points …
Supervisor: Paul Rosero
Semester: Spring 2022
Tags: data analysis, IoT, Python, Embedded systems

PROPOSAL

TinyML is a new trend to deploy deep learning in tiny devices. Therefore, it is necessary to deploy several applications to understand the challenges and opportunities which tinyML brings us. In this scenario, any idea with embedded computer vision, voice recognition, and sensors are welcome.
Supervisor: Paul Rosero
Semester: Spring 2022
Tags: data analysis, IoT, Python, Embedded systems, Computer vision, Voice recognition

PROPOSAL

Energinet has a model that describes the electricity production of a given wind turbine given wind conditions. The current model based on kNN is trained with DMI weather data and historical electricity production data for the wind turbine. The goal of the project is to improve the current model with lifelong learning, extended weather data and different models for a range of different wind …
Supervisors: Philippe Bonnet, Sebastian Büttrich
Semester: Fall 2019
Tags: Wind Energy, Energinet, Data Analysis