Tagged with: machine learning systems


PROPOSAL

Deep learning changed the landscape of many applications like computer vision, natural language processing, etc. On the other hand, deep learning require gigantic computing power offered by modern hardware. As a result data scientists rely on powerful hardware resources offered by shared high-performance computing (HPC) clusters or the cloud. Due to the long-running times of deep learning …
Supervisors: Pınar Tözün, Ehsan Yousefzadeh-Asl-Miandoab
Semester: Fall 2025
Tags: machine learning systems, checkpointing, scheduling, resource management

PROPOSAL

GPU offers massive computational power and parallelism through its Streaming Multiprocessors (SMs). Efficient GPU utilization is critical for maximizing performance and optimizing compute resource usage, which is measured using various metrics such as SMACT (SM Activity) and SMOCC (SM Occupancy), and DRAMA (DRAM Active). These metrics provide insight into how effectively the GPU’s SMs and …
Supervisors: Pınar Tözün, Ehsan Yousefzadeh-Asl-Miandoab
Semester: Fall 2025
Tags: machine learning systems, GPU Utilization, resource management, resource interference

PROPOSAL

Workload collocation has been shown as an effective method to reduce the hardware requirements for certain deep learning (DL) training tasks. On the other hand, there hasn’t been many robust open-source implementations of schedulers that incorporate workload collocation on GPUs for DL. BLOX is a framework that aims at standardizing the way we implement deep learning schedulers. In this …
Supervisors: Pınar Tözün, Ehsan Yousefzadeh-Asl-Miandoab
Semester: Fall 2025
Tags: machine learning systems, scheduling, resource management, workload collocation

PROPOSAL

This project focuses on extending an existing dataset for predicting GPU memory requirements during deep learning training by incorporating transformer-based models such as BERT, GPT, and their variants. The student will study the architecture of these models and develop training scripts to run them under controlled conditions. During training, key GPU metrics—including memory usage, utilization, …
Supervisors: Pınar Tözün, Ehsan Yousefzadeh-Asl-Miandoab
Semester: Fall 2025
Tags: machine learning systems, GPU Memory Requirement, GPU Utilization, resource management